Data
data.etl
General ETL process to move from interm to processed file add data to deployed stage
TextCleaner
Clean text data by removing stopwords, punctuation, new spaces / tabs and converting to lowercase.
Returns:
Name | Type | Description |
---|---|---|
str |
cleaned text |
Source code in src/data/etl.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
|
clean(text)
Apply all cleaning steps to the text.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
unpocessed text |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
processed text |
Source code in src/data/etl.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
|
remove_newline_tabs_spaces(text)
Removes newlines and tabs from a string and replaces them with spaces
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
text with newlines and tabs |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
cleaned text |
Source code in src/data/etl.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
remove_punctuation(text, punct=string.punctuation)
Remove punctuation from the text.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
text with punctuation |
required |
punct |
str
|
Punctuation to remove. Defaults to string.punctuation. |
punctuation
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
text without punctuation |
Source code in src/data/etl.py
233 234 235 236 237 238 239 240 241 242 243 |
|
remove_stopwords(text)
removes stopwords from a string
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
text with stopwords |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
text without stopwords |
Source code in src/data/etl.py
220 221 222 223 224 225 226 227 228 229 230 231 |
|
apply_function_to_non_integer_columns(df, func)
Applies the given function to each column in the DataFrame that is object type dtype. Used for cleaning up text data in the DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
The DataFrame to process. |
required |
func |
callable
|
The function to apply to each non-integer column. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: The DataFrame with non-integer columns processed by the given function. |
Source code in src/data/etl.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
backup_file(path_csv_deployed, dst)
copies file for archives
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path_csv_deployed |
str
|
path of file to back up |
required |
dst |
str
|
path destination of file to save to |
required |
Source code in src/data/etl.py
42 43 44 45 46 47 48 49 50 51 |
|
csv_combine_proc(paths)
combines all datasets from the interim stage
Parameters:
Name | Type | Description | Default |
---|---|---|---|
paths |
list
|
paths from interim datasets |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: combined dataframe |
Source code in src/data/etl.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
csv_combine_update_dep(paths, path_csv_deployed, ref_col)
combines datasets from deployed and processed stage removing duplicated files from deployed stage if processed file has same file name (considers for updated data in new files). CONFIRM file names are the SAME if not it will duplicate data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
paths |
list
|
paths from processed datasets |
required |
path_csv_deployed |
str
|
path of deployed dataset |
required |
ref_col |
str
|
reference column to avoid duplicated dated |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: combined dataset from processed and existing deployed |
Source code in src/data/etl.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
csv_dep_init(paths)
Initilizes dataset to next stage to deployment from proccessed
Parameters:
Name | Type | Description | Default |
---|---|---|---|
paths |
list
|
paths from processed datasets |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: dataset from proccessed initialized |
Source code in src/data/etl.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
datafile_path_finder(file_name)
Constructs a path by combining the parent directory of the current working directory with the 'data' folder and the provided file name. If no file name is provided, a default path is returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_name |
str
|
The name of the file for which the path is to be determined. |
required |
Returns:
Name | Type | Description |
---|---|---|
df_dir |
str
|
The full path to the file, or an indication if no file name was provided. |
Source code in src/data/etl.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
find_nan(df)
finds all NaN values in a dataframe
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
dataframe to search for NaN values |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: count of NaN values in each column |
Source code in src/data/etl.py
156 157 158 159 160 161 162 163 164 165 166 |
|